A Practical Approach to Classify Evolving Data Streams: Training with Limited Amount of Labeled Data

Recent approaches in classifying evolving data streams are based on supervised learning algorithms, which can be trained with labeled data only. Manual labeling of data is both costly and time consuming. Therefore, in a real streaming environment, where huge volumes of data appear at a high speed, labeled data may be very scarce. Thus, only a limited amount of training data may be available for building the classification models, leading to poorly trained classifiers. We apply a novel technique to overcome this problem by building a classification model from a training set having both unlabeled and a small amount of labeled instances. This model is built as micro-clusters using semisupervised clustering technique and classification is performed with κ-nearest neighbor algorithm. An ensemble of these models is used to classify the unlabeled data. Empirical evaluation on both synthetic data and real botnet traffic reveals that our approach, using only a small amount of labeled data for training, outperforms state-of-the-art stream classification algorithms that use twenty times more labeled data than our approach.
Date: December 02, 2008
Book Title: Int. Conf. on Data Mining (ICDM'08)
Type: InProceedings
Edition: Proc 2008
Address: Pisa, Italy
Downloads: 415

Has 1 soft copy


remote link

Bibtex


@InProceedings{A_Practical_Approach_to_Classify_Evolvin,
  author = "Mohammad Masud and Jing Gao and Latifur Khan and Jiawei Han and Xiaohu Li",
  title = "{A Practical Approach to Classify Evolving Data Streams: Training with Limited Amount of Labeled Data}",
  month = "December",
  year = "2008",
  edition = "Proc 2008",
  address = ", Pisa, Italy",
  booktitle = "Int. Conf. on Data Mining (ICDM'08)",
}